Posted  by 

Nhs Activation Of Sepharose 6b

  • Epoxy-activated Sepharose 6B, Glutathione Sepharose 4B, Amersham Hybond 0.45 µm polyvinylidene difluoride (PVDF) and the Sepharose 4 FF-based matrices, Protein G Mag Sepharose, N-Hydroxysuccinimide (NHS) Mag Sepharose, and NHS-activated Sepharose 4 FF, were obtained from GE Healthcare UK Ltd. (Buckinghamshire, U.K.). Recombinant streptococcal.
  • Request PDF on ResearchGate Immobilization of Ulp1 protease on NHS-activated Sepharose: a useful tool for cleavage of the SUMO tag of recombinant proteins Objective: To fabricate an active.
  • Thermo Scientific Pierce NHS-Activated Agarose is a high-quality, amine-reactive, beaded-agarose resin for rapid and stable immobilization of proteins, peptides and other ligands via primary amines.

Nhs Activation Of Sepharose 6b 1

NHS-activated Sepharose™ 4 Fast Flow The preparation and use of affinity chromatography media by coupling biospecific ligands to pre-activated media is a widely used, successful and well-documented technique. NHS-activated Sepharose 4 Fast Flow is a pre-activated agarose matrix that increases the choice of coupling chemistries available.

Did management ever requested a report like that. Did you ever want to list your software counts for your licenses. Sccm 2012 report installed software version Well below you will find the query code to do that.

Nhs Activation Of Sepharose 6b 5

  1. Wilchek, M., Miron, T., and Kohn, J. (1984),Methods in Enzymol.104, 3–53.CrossRefGoogle Scholar
  2. Brummer, W. (1979),J. Solid-Phase Biochem.4, 171–187.Google Scholar
  3. Aplin, J. D. and Hall, L. D. (1980),Eur. J. Biochem.110, 295–309.CrossRefGoogle Scholar
  4. Inman, J. K. and Dintzis, H. M. (1969),Biochemistry8, 4074–4082.CrossRefGoogle Scholar
  5. Cuatrecasas, P. (1970),J. Biol. Chem.245, 3059–3065.Google Scholar
  6. Hoare, D. G. and Koshland, D. E. (1967),J. Biol. Chem.242, 2447–2453.Google Scholar
  7. Davies, G. E. and Stark, G. R. (1970),Proc. Nat. Acad. Sci. USA66, 651–656.CrossRefGoogle Scholar
  8. Pittner, F., Miron, T., Pittner, G., and Wilchek, M. (1980),J. Solid-Phase Biochem.5, 147–166.Google Scholar
  9. Cuatrecasas, P. and Parikh, J. (1972),Biochemistry11, 2291–2298.CrossRefGoogle Scholar
  10. Andre, C., De Backer, J. P., Guillet, J. C., Vanderheyden, P., Vanquelin, G., and Strosberg, A. D. (1983),EMBO J.2, 499–504.Google Scholar
  11. Corti, A. and Cassani, G. (1985),Appl. Biochem. Biotechnol.11, 101–109.CrossRefGoogle Scholar
  12. Wilchek, M. and Miron, T. (1987),Biochemistry26, 2155–2161.CrossRefGoogle Scholar
  13. Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides, G. M. (1980),J. Am. Chem. Soc.102, 6324–6336.CrossRefGoogle Scholar
  14. Noah, O. V., Litmanovich, A. D., and Plate, N. A. (1974),J. Polym. Sci.12, 1711–1725.Google Scholar
  15. Plate, N. A. (1976),Pure Appl. Chem.46, 49–59.CrossRefGoogle Scholar
  16. Adalsteinsson, O., Lamotte, A., Baddour, R. F., Colton, C. K., Pollak, A., and Whitesides, G. M. (1979),J. Mol. Cat.6, 199–225.CrossRefGoogle Scholar
  17. Euranto, E. K. (1969), inThe Chemistry of Carboxylic Acids and Esters, Patai, S. ed., Interscience Publishers, p. 524, 525.Google Scholar
  18. Cline, G. W. and Hanna, S. B. (1988),J. Org. Chem.53, 3583–3586.CrossRefGoogle Scholar