Nhs Activation Of Sepharose 6b
- Epoxy-activated Sepharose 6B, Glutathione Sepharose 4B, Amersham Hybond 0.45 µm polyvinylidene difluoride (PVDF) and the Sepharose 4 FF-based matrices, Protein G Mag Sepharose, N-Hydroxysuccinimide (NHS) Mag Sepharose, and NHS-activated Sepharose 4 FF, were obtained from GE Healthcare UK Ltd. (Buckinghamshire, U.K.). Recombinant streptococcal.
- Request PDF on ResearchGate Immobilization of Ulp1 protease on NHS-activated Sepharose: a useful tool for cleavage of the SUMO tag of recombinant proteins Objective: To fabricate an active.
- Thermo Scientific Pierce NHS-Activated Agarose is a high-quality, amine-reactive, beaded-agarose resin for rapid and stable immobilization of proteins, peptides and other ligands via primary amines.
Nhs Activation Of Sepharose 6b 1
NHS-activated Sepharose™ 4 Fast Flow The preparation and use of affinity chromatography media by coupling biospecific ligands to pre-activated media is a widely used, successful and well-documented technique. NHS-activated Sepharose 4 Fast Flow is a pre-activated agarose matrix that increases the choice of coupling chemistries available.
Did management ever requested a report like that. Did you ever want to list your software counts for your licenses. Well below you will find the query code to do that.
Nhs Activation Of Sepharose 6b 5
- Wilchek, M., Miron, T., and Kohn, J. (1984),Methods in Enzymol.104, 3–53.CrossRefGoogle Scholar
- Brummer, W. (1979),J. Solid-Phase Biochem.4, 171–187.Google Scholar
- Aplin, J. D. and Hall, L. D. (1980),Eur. J. Biochem.110, 295–309.CrossRefGoogle Scholar
- Inman, J. K. and Dintzis, H. M. (1969),Biochemistry8, 4074–4082.CrossRefGoogle Scholar
- Cuatrecasas, P. (1970),J. Biol. Chem.245, 3059–3065.Google Scholar
- Hoare, D. G. and Koshland, D. E. (1967),J. Biol. Chem.242, 2447–2453.Google Scholar
- Davies, G. E. and Stark, G. R. (1970),Proc. Nat. Acad. Sci. USA66, 651–656.CrossRefGoogle Scholar
- Pittner, F., Miron, T., Pittner, G., and Wilchek, M. (1980),J. Solid-Phase Biochem.5, 147–166.Google Scholar
- Cuatrecasas, P. and Parikh, J. (1972),Biochemistry11, 2291–2298.CrossRefGoogle Scholar
- Andre, C., De Backer, J. P., Guillet, J. C., Vanderheyden, P., Vanquelin, G., and Strosberg, A. D. (1983),EMBO J.2, 499–504.Google Scholar
- Corti, A. and Cassani, G. (1985),Appl. Biochem. Biotechnol.11, 101–109.CrossRefGoogle Scholar
- Wilchek, M. and Miron, T. (1987),Biochemistry26, 2155–2161.CrossRefGoogle Scholar
- Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides, G. M. (1980),J. Am. Chem. Soc.102, 6324–6336.CrossRefGoogle Scholar
- Noah, O. V., Litmanovich, A. D., and Plate, N. A. (1974),J. Polym. Sci.12, 1711–1725.Google Scholar
- Plate, N. A. (1976),Pure Appl. Chem.46, 49–59.CrossRefGoogle Scholar
- Adalsteinsson, O., Lamotte, A., Baddour, R. F., Colton, C. K., Pollak, A., and Whitesides, G. M. (1979),J. Mol. Cat.6, 199–225.CrossRefGoogle Scholar
- Euranto, E. K. (1969), inThe Chemistry of Carboxylic Acids and Esters, Patai, S. ed., Interscience Publishers, p. 524, 525.Google Scholar
- Cline, G. W. and Hanna, S. B. (1988),J. Org. Chem.53, 3583–3586.CrossRefGoogle Scholar